Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 9(1): 55-69, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177297

RESUMEN

Respiratory reductases enable microorganisms to use molecules present in anaerobic ecosystems as energy-generating respiratory electron acceptors. Here we identify three taxonomically distinct families of human gut bacteria (Burkholderiaceae, Eggerthellaceae and Erysipelotrichaceae) that encode large arsenals of tens to hundreds of respiratory-like reductases per genome. Screening species from each family (Sutterella wadsworthensis, Eggerthella lenta and Holdemania filiformis), we discover 22 metabolites used as respiratory electron acceptors in a species-specific manner. Identified reactions transform multiple classes of dietary- and host-derived metabolites, including bioactive molecules resveratrol and itaconate. Products of identified respiratory metabolisms highlight poorly characterized compounds, such as the itaconate-derived 2-methylsuccinate. Reductase substrate profiling defines enzyme-substrate pairs and reveals a complex picture of reductase evolution, providing evidence that reductases with specificities for related cinnamate substrates independently emerged at least four times. These studies thus establish an exceptionally versatile form of anaerobic respiration that directly links microbial energy metabolism to the gut metabolome.


Asunto(s)
Bacterias , Ecosistema , Humanos , Anaerobiosis , Bacterias/genética , Bacterias/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Respiración
2.
J Bacteriol ; 206(1): e0042623, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38174933

RESUMEN

Bile acids (BAs) are cholesterol-derived molecules that aid in digestion and nutrient absorption, regulate host metabolic processes, and influence physiology of the gut microbiota. Both the host and its microbiome contribute to enzymatic modifications that shape the chemical diversity of BAs in the gut. Several bacterial species have been reported to conjugate standard amino acids to BAs, but it was not known if bacteria conjugate BAs to other amine classes. Here, we show that Bacteroides fragilis strain P207, isolated from a bacterial bloom in the J-pouch of a patient with ulcerative colitis pouchitis, conjugates standard amino acids and the neuroactive amines γ-aminobutyric acid (GABA) and tyramine to deoxycholic acid. We extended this analysis to other human gut isolates and identified species that are competent to conjugate GABA and tyramine to primary and secondary BAs, and further identified diverse BA-GABA and BA-tyramine amides in human stool. A longitudinal metabolomic analysis of J-pouch contents of the patient from whom B. fragilis P207 was isolated revealed highly reduced levels of secondary bile acids and a shifting BA amide profile before, during, and after onset of pouchitis, including temporal changes in several BA-GABA amides. Treatment of pouchitis with ciprofloxacin was associated with a marked reduction of nearly all BA amides in the J-pouch. Our study expands the known repertoire of conjugated bile acids produced by bacteria to include BA conjugates to GABA and tyramine and demonstrates that these molecules are present in the human gut. IMPORTANCE BAs are modified in multiple ways by host enzymes and the microbiota to produce a chemically diverse set of molecules that assist in the digestive process and impact many physiological functions. This study reports the discovery of bacterial species that conjugate the neuroactive amines, GABA and tyramine, to primary and secondary BAs. We further present evidence that BA-GABA and BA-tyramine conjugates are present in the human gut, and document a shifting BA-GABA profile in a human pouchitis patient before, during, and after inflammation and antibiotic treatment. GABA and tyramine are common metabolic products of the gut microbiota and potent neuroactive molecules. GABA- and tyramine-conjugated BAs may influence receptor-mediated regulatory mechanisms of humans and their gut microbes, and absorption of these molecules and their entry into enterohepatic circulation may impact host physiology at distal tissue sites. This study defines new conjugated bile acids in the human gut.


Asunto(s)
Ácidos y Sales Biliares , Reservoritis , Humanos , Aminoácidos , Ácido gamma-Aminobutírico , Aminas , Catálisis , Amidas
3.
bioRxiv ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37808758

RESUMEN

Bile acids (BAs) are cholesterol-derived molecules that aid in digestion and nutrient absorption, regulate host metabolic processes, and influence physiology of the gut microbiota. Both the host and its microbiome contribute to enzymatic modifications that shape the chemical diversity of BAs in the gut. Several bacterial species have been reported to conjugate standard amino acids to BAs, but it was not known if bacteria conjugate BAs to other amine classes. Here, we show that Bacteroides fragilis strain P207, isolated from a bacterial bloom in the J-pouch of a patient with ulcerative colitis (UC) pouchitis, conjugates standard amino acids and the neuroactive amines γ-aminobutyric acid (GABA) and tyramine to deoxycholic acid. We extended this analysis to other human gut isolates and identified species that are competent to conjugate GABA and tyramine to primary and secondary BAs, and further identified diverse BA-GABA and BA-tyramine amides in human stool. A longitudinal metabolomic analysis of J-pouch contents of the patient from whom B. fragilis P207 was isolated revealed highly reduced levels of secondary bile acids and a shifting BA amide profile before, during, and after onset of pouchitis, including temporal changes in several BA-GABA amides. Treatment of pouchitis with ciprofloxacin was associated with a marked reduction of nearly all BA amides in the J-pouch. Our study expands the known repertoire of conjugated bile acids produced by bacteria to include BA conjugates to GABA and tyramine and demonstrates that these molecules are present in the human gut.

4.
Nat Rev Drug Discov ; 22(11): 895-916, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697042

RESUMEN

Developments in computational omics technologies have provided new means to access the hidden diversity of natural products, unearthing new potential for drug discovery. In parallel, artificial intelligence approaches such as machine learning have led to exciting developments in the computational drug design field, facilitating biological activity prediction and de novo drug design for molecular targets of interest. Here, we describe current and future synergies between these developments to effectively identify drug candidates from the plethora of molecules produced by nature. We also discuss how to address key challenges in realizing the potential of these synergies, such as the need for high-quality datasets to train deep learning algorithms and appropriate strategies for algorithm validation.


Asunto(s)
Inteligencia Artificial , Productos Biológicos , Humanos , Algoritmos , Aprendizaje Automático , Descubrimiento de Drogas , Diseño de Fármacos , Productos Biológicos/farmacología
5.
Nat Commun ; 13(1): 6615, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329015

RESUMEN

Respiratory failure and mortality from COVID-19 result from virus- and inflammation-induced lung tissue damage. The intestinal microbiome and associated metabolites are implicated in immune responses to respiratory viral infections, however their impact on progression of severe COVID-19 remains unclear. We prospectively enrolled 71 patients with COVID-19 associated critical illness, collected fecal specimens within 3 days of medical intensive care unit admission, defined microbiome compositions by shotgun metagenomic sequencing, and quantified microbiota-derived metabolites (NCT #04552834). Of the 71 patients, 39 survived and 32 died. Mortality was associated with increased representation of Proteobacteria in the fecal microbiota and decreased concentrations of fecal secondary bile acids and desaminotyrosine (DAT). A microbiome metabolic profile (MMP) that accounts for fecal secondary bile acids and desaminotyrosine concentrations was independently associated with progression of respiratory failure leading to mechanical ventilation. Our findings demonstrate that fecal microbiota composition and microbiota-derived metabolite concentrations can predict the trajectory of respiratory function and death in patients with severe SARS-Cov-2 infection and suggest that the gut-lung axis plays an important role in the recovery from COVID-19.


Asunto(s)
COVID-19 , Neumonía , Insuficiencia Respiratoria , Humanos , SARS-CoV-2 , Ácidos y Sales Biliares , Inmunidad
6.
Microbiol Spectr ; 10(2): e0013922, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35195438

RESUMEN

Phylogenetically diverse bacteria can carry out chloramphenicol reduction, but only a single enzyme has been described that efficiently catalyzes this reaction, the NfsB nitroreductase from Haemophilus influenzae strain KW20. Here, we tested the hypothesis that some NfsB homologs function as housekeeping enzymes with the potential to become chloramphenicol resistance enzymes. We found that expression of H. influenzae and Neisseria spp. nfsB genes, but not Pasteurella multocida nfsB, allows Escherichia coli to resist chloramphenicol by nitroreduction. Mass spectrometric analysis confirmed that purified H. influenzae and N. meningitides NfsB enzymes reduce chloramphenicol to amino-chloramphenicol, while kinetics analyses supported the hypothesis that chloramphenicol reduction is a secondary activity. We combined these findings with atomic resolution structures of multiple chloramphenicol-reducing NfsB enzymes to identify potential key substrate-binding pocket residues. Our work expands the chloramphenicol reductase family and provides mechanistic insights into how a housekeeping enzyme might confer antibiotic resistance. IMPORTANCE The question of how new enzyme activities evolve is of great biological interest and, in the context of antibiotic resistance, of great medical importance. Here, we have tested the hypothesis that new antibiotic resistance mechanisms may evolve from promiscuous housekeeping enzymes that have antibiotic modification side activities. Previous work identified a Haemophilus influenzae nitroreductase housekeeping enzyme that has the ability to give Escherichia coli resistance to the antibiotic chloramphenicol by nitroreduction. Herein, we extend this work to enzymes from other Haemophilus and Neisseria strains to discover that expression of chloramphenicol reductases is sufficient to confer chloramphenicol resistance to Es. coli, confirming that chloramphenicol reductase activity is widespread across this nitroreductase family. By solving the high-resolution crystal structures of active chloramphenicol reductases, we identified residues important for this activity. Our work supports the hypothesis that housekeeping proteins possessing multiple activities can evolve into antibiotic resistance enzymes.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Antibacterianos/farmacología , Cloranfenicol/metabolismo , Cloranfenicol/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Nitrorreductasas/química , Nitrorreductasas/genética , Nitrorreductasas/metabolismo , Oxidorreductasas/genética
7.
ISME Commun ; 2(1): 22, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-37938725

RESUMEN

Microbial drug discovery programs rely heavily on accessing bacterial diversity from the environment to acquire new specialized metabolite (SM) lead compounds for the therapeutic pipeline. Therefore, knowledge of how commonly culturable bacterial taxa are distributed in nature, in addition to the degree of variation of SM production within those taxa, is critical to informing these front-end discovery efforts and making the overall sample collection and bacterial library creation process more efficient. In the current study, we employed MALDI-TOF mass spectrometry and the bioinformatics pipeline IDBac to analyze diversity within phylotype groupings and SM profiles of hundreds of bacterial isolates from two Eunapius fragilis freshwater sponges, collected 1.5 km apart. We demonstrated that within two sponge samples of the same species, the culturable bacterial populations contained significant overlap in approximate genus-level phylotypes but mostly nonoverlapping populations of isolates when grouped lower than the level of genus. Further, correlations between bacterial phylotype and SM production varied at the species level and below, suggesting SM distribution within bacterial taxa must be analyzed on a case-by-case basis. Our results suggest that two E. fragilis freshwater sponges collected in similar environments can exhibit large culturable diversity on a species-level scale, thus researchers should scrutinize the isolates with analyses that take both phylogeny and SM production into account to optimize the chemical space entering into a downstream bacterial library.

8.
Antonie Van Leeuwenhoek ; 113(12): 2213-2221, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33200278

RESUMEN

A putative novel clade within the genus Streptomyces was discovered following antifungal screening against Pseudogymnoascus destructans, the causative agent of white-nose syndrome, and described using multi-locus sequencing analysis. Swabs from both the cave myotis bat (Myotis velifer) and the Brazilian free-tailed bat (Tadarida brasiliensis) in southern New Mexico bore isolates AC536, AC541T and AC563, which were characterised using phylogenetic, morphological, and phenotypic analyses. Multi-locus sequence analysis positions AC541T with neighbors Streptomyces rubidus (NRRL B-24619T), Streptomyces guanduensis (NRRL B-24617T), and Streptomyces yeochonensis (NRRL B-24245T). A complete genome of the type strain was assembled to determine its taxonomy and secondary metabolite potential. ANI comparisons between all closely related types strains are shown to be well below the 95-96% species delineation. DNA-DNA relatedness between AC541T and its nearest neighbors ranged between 23.7 and 24.1% confirming novelty. Approximately 1.49 Mb or 17.76% of the whole genome is devoted to natural product biosynthesis. The DNA G + C content of the genomic DNA of the type strain is 73.13 mol %. Micromorphology depicts ovoid spores with smooth surfaces in flexuous chains. Strains presented an ivory to yellow hue on most ISP media except inorganic salts-starch agar (ISP4) and can grow on D-glucose, mannitol, and D-fructose, but exhibited little to no growth on L-arabinose, sucrose, D-xylose, inositol, L-rhamnose, D-raffinose, and cellulose. This clade possesses the capability to grow from 10 to 45 °C and 12.5% (w/v) NaCl. There was strain growth variation in pH, but all isolates thrive at alkaline levels. Based on our polyphasic study of AC541T, the strain warrants the assignment to a novel species, for which the name Streptomyces buecherae sp. nov. is proposed. The type strain is AC541T (= JCM 34263T, = ATCC TSD201T).


Asunto(s)
Quirópteros/microbiología , Streptomyces/clasificación , Streptomyces/aislamiento & purificación , Animales , Ascomicetos , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , New Mexico , Filogenia , Análisis de Secuencia de ADN , Streptomyces/genética
9.
Nat Chem Biol ; 16(1): 60-68, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31768033

RESUMEN

Genome mining has become a key technology to exploit natural product diversity. Although initially performed on a single-genome basis, the process is now being scaled up to mine entire genera, strain collections and microbiomes. However, no bioinformatic framework is currently available for effectively analyzing datasets of this size and complexity. In the present study, a streamlined computational workflow is provided, consisting of two new software tools: the 'biosynthetic gene similarity clustering and prospecting engine' (BiG-SCAPE), which facilitates fast and interactive sequence similarity network analysis of biosynthetic gene clusters and gene cluster families; and the 'core analysis of syntenic orthologues to prioritize natural product gene clusters' (CORASON), which elucidates phylogenetic relationships within and across these families. BiG-SCAPE is validated by correlating its output to metabolomic data across 363 actinobacterial strains and the discovery potential of CORASON is demonstrated by comprehensively mapping biosynthetic diversity across a range of detoxin/rimosamide-related gene cluster families, culminating in the characterization of seven detoxin analogues.


Asunto(s)
Actinobacteria/genética , Vías Biosintéticas/genética , Biología Computacional/métodos , Genoma Bacteriano , Algoritmos , Productos Biológicos , Análisis por Conglomerados , Minería de Datos/métodos , Genómica , Metabolómica , Microbiota , Familia de Multigenes , Filogenia , Reproducibilidad de los Resultados , Programas Informáticos
10.
Nat Prod Rep ; 35(9): 847-878, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-29916519

RESUMEN

Covering: up to 2018 Thioester reductase domains catalyze two- and four-electron reductions to release natural products following assembly on nonribosomal peptide synthetases, polyketide synthases, and their hybrid biosynthetic complexes. This reductive off-loading of a natural product yields an aldehyde or alcohol, can initiate the formation of a macrocyclic imine, and contributes to important intermediates in a variety of biosyntheses, including those for polyketide alkaloids and pyrrolobenzodiazepines. Compounds that arise from reductase-terminated biosynthetic gene clusters are often reactive and exhibit biological activity. Biomedically important examples include the cancer therapeutic Yondelis (ecteinascidin 743), peptide aldehydes that inspired the first therapeutic proteasome inhibitor bortezomib, and numerous synthetic derivatives and antibody drug conjugates of the pyrrolobenzodiazepines. Recent advances in microbial genomics, metabolomics, bioinformatics, and reactivity-based labeling have facilitated the detection of these compounds for targeted isolation. Herein, we summarize known natural products arising from this important category, highlighting their occurrence in Nature, biosyntheses, biological activities, and the technologies used for their detection and identification. Additionally, we review publicly available genomic data to highlight the remaining potential for novel reductively tailored compounds and drug leads from microorganisms. This thorough retrospective highlights various molecular families with especially privileged bioactivity while illuminating challenges and prospects toward accelerating the discovery of new, high value natural products.


Asunto(s)
Productos Biológicos/metabolismo , Péptido Sintasas/metabolismo , Sintasas Poliquetidas/metabolismo , Alcaloides/biosíntesis , Alcaloides/química , Compuestos de Azabiciclo/química , Compuestos de Azabiciclo/metabolismo , Benzodiazepinonas/química , Benzodiazepinonas/metabolismo , Productos Biológicos/química , Productos Biológicos/farmacología , Vías Biosintéticas/genética , Ciclización , Depsipéptidos/química , Depsipéptidos/metabolismo , Dipéptidos/química , Dipéptidos/metabolismo , Indoles/química , Indoles/metabolismo , Lactamas/química , Lactamas/metabolismo , Leupeptinas/química , Leupeptinas/metabolismo , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Familia de Multigenes , Péptido Sintasas/genética , Sintasas Poliquetidas/genética , Dominios Proteicos
11.
ACS Infect Dis ; 1(4): 168-174, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-26594660

RESUMEN

Multidrug- and extensively drug-resistant strains of Mycobacterium tuberculosis are resistant to first- and second-line drug regimens and resulted in 210,000 fatalities in 2013. In the current study, we screened a library of aquatic bacterial natural product fractions for their ability to inhibit this pathogen. A fraction from a Lake Michigan bacterium exhibited significant inhibitory activity, from which we characterized novel diazaquinomycins H and J. This antibiotic class displayed an in vitro activity profile similar or superior to clinically used anti-tuberculosis agents and maintained this potency against a panel of drug-resistant M. tuberculosis strains. Importantly, these are among the only freshwater-derived actinomycete bacterial metabolites described to date. Further in vitro profiling against a broad panel of bacteria indicated that this antibiotic class selectively targets M. tuberculosis. Additionally, in the case of this pathogen we present evidence counter to previous reports that claim the diazaquinomycins target thymidylate synthase in Gram-positive bacteria. Thus, we establish freshwater environments as potential sources for novel antibiotic leads and present the diazaquinomycins as potent and selective inhibitors of M. tuberculosis.

12.
Mar Drugs ; 13(9): 5815-27, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26389922

RESUMEN

A screening of our actinomycete fraction library against the NCI-60 SKOV3 human tumor cell line led to the isolation of isopimara-2-one-3-ol-8,15-diene (1), lagumycin B (2), dehydrorabelomycin (3), phenanthroviridone (4), and WS-5995 A (5). These secondary metabolites were produced by a Micromonospora sp. isolated from sediment collected off the Cát Bà peninsula in the East Sea of Vietnam. Compound 1 is a novel Δ(8,9)-pimarane diterpene, representing one of approximately 20 actinomycete-produced diterpenes reported to date, while compound 2 is an angucycline antibiotic that has yet to receive formal characterization. The structures of 1 and 2 were elucidated by combined NMR and MS analysis and the absolute configuration of 1 was assigned by analysis of NOESY NMR and CD spectroscopic data. Compounds 2-5 exhibited varying degrees of cytotoxicity against a panel of cancerous and non-cancerous cell lines. Overall, this study highlights our collaborative efforts to discover novel biologically active molecules from the large, underexplored, and biodiversity-rich waters of Vietnam's East Sea.


Asunto(s)
Abietanos/química , Antineoplásicos/química , Antineoplásicos/farmacología , Micromonospora/química , Micromonospora/metabolismo , Animales , Línea Celular Tumoral , Femenino , Humanos , Estructura Molecular , Océanos y Mares , Neoplasias Ováricas/tratamiento farmacológico , Vietnam
13.
Mar Drugs ; 12(6): 3574-86, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24921978

RESUMEN

As part of our program to identify novel secondary metabolites that target drug-resistant ovarian cancers, a screening of our aquatic-derived actinomycete fraction library against a cisplatin-resistant ovarian cancer cell line (OVCAR5) led to the isolation of novel diaza-anthracene antibiotic diazaquinomycin E (DAQE; 1), the isomeric mixture of diazaquinomycin F (DAQF; 2) and diazaquinomycin G (DAQG; 3), and known analog diazaquinomycin A (DAQA; 4). The structures of DAQF and DAQG were solved through deconvolution of X-Ray diffraction data of their corresponding co-crystal. DAQE and DAQA exhibited moderate LC50 values against OVCAR5 of 9.0 and 8.8 µM, respectively. At lethal concentrations of DAQA, evidence of DNA damage was observed via induction of apoptosis through cleaved-PARP. Herein, we will discuss the isolation, structure elucidation, and biological activity of these secondary metabolites.


Asunto(s)
Antracenos/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Quinonas/farmacología , Streptomyces/metabolismo , Antracenos/química , Antracenos/aislamiento & purificación , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Cristalización , Daño del ADN/efectos de los fármacos , Resistencia a Antineoplásicos , Femenino , Humanos , Dosificación Letal Mediana , Neoplasias Ováricas/patología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Quinonas/química , Quinonas/aislamiento & purificación , Metabolismo Secundario , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...